

Imaging Techniques

Deutsche Ausgabe: DOI: 10.1002/ange.201603813 Internationale Ausgabe: DOI: 10.1002/anie.201603813

Immobilization of the Gas Signaling Molecule H₂S by Radioisotopes: Detection, Quantification, and In Vivo Imaging

Swarbhanu Sarkar⁺, Yeong Su Ha⁺, Nisarg Soni⁺, Gwang Il An⁺, Woonghee Lee, Min Hwan Kim, Phuong Tu Huynh, Heesu Ahn, Nikunj Bhatt, Yong Jin Lee, Jung Young Kim, Kwon Moo Park, Isao Ishii, Shin-Geol Kang, and Jeongsoo Yoo*

Abstract: Hydrogen sulfide (H₂S) has multifunctional roles as a gas signaling molecule in living systems. However, the efficient detection and imaging of H₂S in live animals is very challenging. Herein, we report the first radioisotope-based immobilization technique for the detection, quantification, and in vivo imaging of endogenous H₂S. Macrocyclic ⁶⁴Cu complexes that instantly reacted with gaseous H_2S to form insoluble ⁶⁴CuS in a highly sensitive and selective manner were prepared. The H_2S concentration in biological samples was measured by a thin-layer radiochromatography method. When ⁶⁴Cu-cyclen was injected into mice, an elevated H₂S concentration in the inflamed paw was clearly visualized and quantified by Cerenkov luminescence and positron emission tomography (PET) imaging. PET imaging was also able to pinpoint increased H₂S levels in a millimeter-sized infarcted lesion of the rat heart.

Hydrogen sulfide (H₂S) was the third gaseous signaling molecule to be identified, after NO and CO. H₂S is an important signaling mediator for a wide range of physiological and pathological functions.^[1] The level of endogenous H₂S is very low and is tightly regulated in living organisms. Alterations in H₂S levels are associated with many diseases, such as inflammation, hypertension, atherosclerosis, diabetes, Alzheimer's disease, and cancer.^[2] However, considering its importance in biology and medicine, research tools for the precise detection and quantification of H₂S are very limited.^[3] Specifically, the lack of a noninvasive imaging technique for

whole-body monitoring of H_2S is a major obstacle to efficient H_2S research in live animals, including humans.

There are several known hydrogen sulfide detection methods.^[4] However, because all of these methods were originally developed to measure H₂S in nonbiological samples, they are destructive and require harsh sample-preparation steps.^[5] Furthermore, the volatility of H₂S gas and its chemical complexity in biological systems (labile, bound, and free H₂S and polysulfides) make the precise detection of H₂S more challenging.^[4]

Imaging techniques based on fluorescent dyes have emerged as new detection methods for H₂S.^[6] The most widely utilized strategies to capture sulfide take advantage of its redox,^[7] demetalation,^[8] or nucleophilic properties.^[9] Even though these new approaches have several advantages, their applications in live-animal imaging are limited, mainly because of the low tissue penetration of emitted fluorescent light. The typical maximum tissue penetration for optical imaging is less than 1 cm.[10] Only a few proof-of-concept imaging studies have been performed, on small worms,[11] transparent zebra fish,[12] and mice (at shallow skin depths).^[13] To detect endogenous H₂S inside animal bodies and potentially in humans without a detection-depth issue, the development of a new class of imaging probes is required.^[14] Herein, we report new radioactive probes for the efficient detection, accurate quantification, and nuclear imaging of H₂S in live animals.

H₂S reacts with copper(II) ions to form insoluble copper sulfide (CuS, solubility product $K_{\rm sp} = 8.0 \times 10^{-36}$) in aqueous solutions^[15] (Figure 1a). We hypothesized that if we could trap volatile H₂S gas in a solid form by using radioactive copper ions, we could detect and quantify H₂S accurately on the basis of the high sensitivity of these radioisotopes. First, to identify a copper complex with appropriate stability, that is, one labile enough to react with hydrogen sulfide at high reactivity but robust enough against other competing biological components, we prepared 20 ⁶⁴Cu complexes by radiolabeling 20 carefully selected chelators (see Figure S1 in the Supporting Information). Of these 20, 12 were synthesized to study the effects of coordination atoms, substituents, steric hindrance, stereostructure, and cross-bridging (see the Supporting Information). Copper-64 has a half-life of 12.7 h and decays by positron emission (β^+ , 17.8%), which enables highquality positron emission tomography (PET) imaging. The radiolabeling step was completed by mixing 64CuCl₂ (37-740 MBq) with the appropriate chelators (1-100 µg) in ammonium acetate buffer (0.1m, pH 6.8), by simple shaking for 5-20 min at 60 °C. Quantitative radiolabeling was con-

Department of Molecular Medicine, Department of Anatomy BK21 Plus Program, Kyungpook National University

Daegu 41944 (Korea)

E-mail: yooj@knu.ac.kr

Dr. G. I. An,[+] M. H. Kim, Dr. Y. J. Lee, Dr. J. Y. Kim

Molecular Imaging Research Centre

Korea Institute of Radiological and Medical Sciences

Seoul 01812 (Korea)

Prof. I. Ishii

Department of Biochemistry, Keio University

Tokyo 105-8512 (Japan)

Prof. S.-G. Kang

Department of Chemistry, Daegu University Gyeongsan 38453 (Korea)

[+] These authors contributed equally.

Supporting information for this article can be found under: http://dx.doi.org/10.1002/anie.201603813.

^[*] Dr. S. Sarkar, [*] Y. S. Ha, [*] N. Soni, [*] W. Lee, P. T. Huynh, H. Ahn, Dr. N. Bhatt, Prof. K. M. Park, Prof. J. Yoo Department of Molecular Medicine, Department of Anatomy

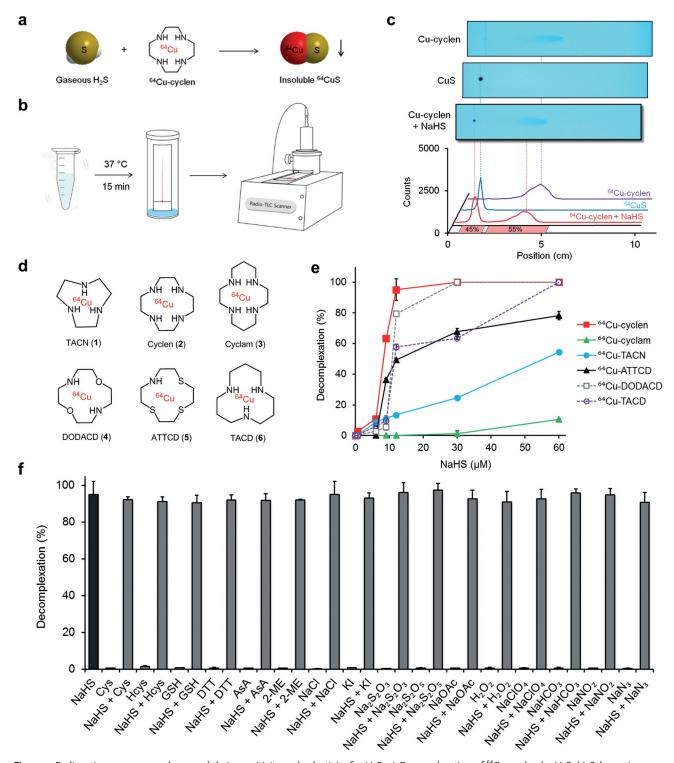


Figure 1. Radioactive copper complexes and their sensitivity and selectivity for H_2S . a) Decomplexation of 64 Cu–cyclen by H_2S . b) Schematic representation of H_2S detection by the radio-TLC method. c) TLC profiles of nonradioactive Cu–cyclen, CuS, and a reaction mixture of Cu–cyclen and H_2S , and their corresponding radio-TLC chromatograms. d) The six 64 Cu complexes screened. e) Sensitivity results of the six probes. f) Selectivity of 64 Cu–cyclen towards H_2S over various biological competitors.

firmed by thin-layer radiochromatography (radio-TLC). The radiolabeled complexes did not require additional purification for the following in vitro and in vivo experiments.

The radiolabeled Cu^{II} complexes were then tested for their sensitivity and selectivity for H_2S . Sufficiently labile

⁶⁴Cu-labeled complexes, such as ⁶⁴Cu-cyclen, were found to react with H₂S to form insoluble ⁶⁴CuS precipitates (Figure 1a). The resulting ⁶⁴CuS could be separated readily from the intact initial complex by thin-layer chromatography (TLC) and could also be accurately quantified by using

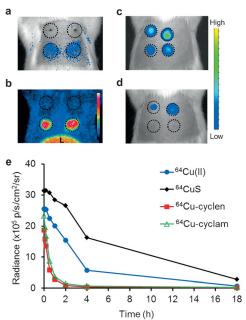
a radio-TLC scanner (Figure 1b). Whereas intact complexes move along with the developing solvent (methanol/10% ammonium acetate, 1:1), formed CuS remains at the spotting origin on the C18 TLC plate (Figure 1c, top). The retention values ($R_{\rm f}$) of the radiolabeled complex matched with those of the nonradioactive copper complex. The decomplexation percentage was calculated from the integration ratio of the ⁶⁴Cu complex and ⁶⁴CuS peaks in the radio-TLC chromatograms (Figure 1c, bottom).

For the sensitivity test, we first assessed all radiolabeled complexes with a freshly prepared 60 µm sodium hydrosulfide (NaHS) solution. NaHS reaches equilibrium rapidly and essentially exists in both NaHS and H₂S forms in water. [3] The mixture of the ⁶⁴Cu complex (ca. 1.85 MBq) and NaHS solution (500 μL) was shaken at 37 °C for 15 min, vortexed, spotted on a TLC plate, developed, and analyzed with a radio-TLC scanner. Among the 20 tested complexes, nine complexes (probes 1, 2, 3, 4, 5, 6, 7, 10, 19) showed some reactivity, that is, decomplexation and ⁶⁴CuS formation (see Table S1 in the Supporting Information). The remaining 11 complexes were highly intact at this concentration. Generally, nonsubstituted simple macrocyclic chelators showed higher reactivity with NaHS. The most promising six complexes, presenting different macrocyclic backbones (Figure 1 d), were selected and tested at lower concentrations of NaHS. 64Cucyclen (2) showed the highest sensitivity, followed by 64Cu-DODACD (4) and ⁶⁴Cu–TACD (6), whereas ⁶⁴Cu–cyclam (3) showed the lowest sensitivity (Figure 1e). At a concentration of 12 µm NaHS, ⁶⁴Cu-cyclen showed nearly quantitative demetalation. The minimum detection limit of NaHS with ⁶⁴Cu-cyclen was calculated to be 0.15 μM (see Figure S2). Other azamacrocyclic complexes with a smaller or larger ring size (TACN, cyclam, TACD) showed less sensitivity for H₂S. Any replacement of the nitrogen atoms of cyclen with oxygen or sulfur (DODACD and ATTCD) also decreased the sensitivity. When the reactivity of the six 64Cu complexes was tested with 60 µm NaHS, the fastest reactivity was observed with 64Cu-TACD and 64Cu-DODACD, followed by 64Cu-cyclen. All three complexes showed 100% decomplexation within 5 min (see Figure S3).

We then tested the selectivity of six probes for H₂S in the presence of other potential competitors, such as biothiols, inorganic sulfur compounds, anions, and oxidants, under biological conditions (see Table S2). ⁶⁴Cu-cyclen showed practically no decomplexation in the presence of abundant biologically relevant thiols, such as glutathione (GSH, 10 mm), L-cysteine (Cys, 1 mm), and homocysteine (Hcys, 1 mм). ⁶⁴Cu-cyclen also showed high robustness in the presence of other thiols (2-mercaptoethanol (2-ME), DLdithiothreitol (DTT)), inorganic sulfur compounds ($S_2O_3^{2-}$, $S_2O_5^{2-}$), reducing agents (ascorbic acid (AsA)), inorganic nucleophiles (Cl⁻, I⁻, OAc⁻, ClO₄⁻, HCO₃⁻, NO₂⁻, N₃⁻), and reactive oxygen species (H₂O₂) at a minimum concentration of 100 μm. However, upon the addition of 12 μm NaHS, all reactions showed nearly quantitative decomplexation, regardless of the presence of competing compounds (Figure 1 f). ⁶⁴Cu-cyclen was also highly inert toward NO and HNO at a 100 µm concentration (see Figure S4). These results clearly demonstrate that ⁶⁴Cu-cyclen reacts with H₂S with high selectivity without any interference from other compounds, even with a maximum 500-fold excess of NaHS. Three other probes, ⁶⁴Cu–TACN, cyclam, and ATTCD, also showed high selectivity (see Table S2).

We also tested the selectivity of 64Cu-cyclen for H₂S over other polysulfides (see Figure S5). Even though Na₂S₂, Na₂S₄, and K_2S_n showed some reactivity with ⁶⁴Cu-cyclen at a concentration of 12 µm (<3.4% decomplexation), H₂S showed more than 30-fold higher reactivity with ⁶⁴Cu-cyclen at the same concentration (100% decomplexation). ⁶⁴Cu-cyclen, which showed the best results in both the sensitivity and selectivity studies with H2S, is a small inorganic compound with high water solubility. The octanol-water partition coefficient (LogP) of 64Cu-cyclen was measured to be -3.03 ± 0.03 . Its high sensitivity against H₂S was also maintained in phosphate-buffered saline (PBS), in fetal bovine serum (FBS), and at higher salt concentrations, such as 1M NaCl (see Figure S6a). The protein binding of ⁶⁴Cu-cyclen was less than 5%. 64Cu-cyclen was stable in PBS at room temperature for up to 28 h (see Figure S7). Copper(II) ions have a very high binding affinity for cyclen ($\log K = 24.8$). The specific activity of ⁶⁴Cu-cyclen was in the range of 1000- $1700 \text{ MBq } \mu\text{g}^{-1}$.

 64 Cu–cyclen showed a good correlation between decomplexation and H_2S concentration only up to 6 μм (Figure 1 e). In contrast, 64 Cu–TACN showed excellent linearity over a wider concentration range (see Figure S8 a). The decomplexation percentage increased linearly, up to 60 μM H_2S (Figure 1 e). For the rapid and reproducible detection of H_2S in biological samples, we tested various TLC conditions and found that the combination of instant TLC (ITLC) $^{[16]}$ and 2% sodium dodecyl sulfate (SDS) solution as the developing solvent was most effective. Under these conditions, the decomplexed 64 CuS remained at the TLC origin, but all intact 64 Cu–TACN complexes and any other 64 Cu adducts moved with the surfactant SDS solution (see Figure S8 b). No interaction between 64 CuS and blood components was observed (see Figure S9).


The H₂S concentration in the plasma of Sprague–Dawley (SD) rats was measured by TLC (64Cu-TACN) and the methylene blue (MB) method.^[4] The H₂S concentration in plasma was measured as $(23.8 \pm 7.0) \, \mu \text{M}$ by using the MB method. [17] In contrast, the TLC method yielded a much lower concentration, $(2.96 \pm 0.42) \,\mu\text{M}$, which falls within a range comparable to free H₂S concentrations measured by the monobromobimane/HPLC method. [18] The large discrepancy between these two methods might arise from the different detection mechanisms employed; whereas ⁶⁴Cu–TACN reacts only with free H₂S, the MB method detects all sulfide pools in biological samples.^[19] The TLC method has advantages over the MB method, as it is characterized by a simple incubation process, no need for additional chemicals, a short measurement time, and no interference due to the presence of pigments in the sample.^[4]

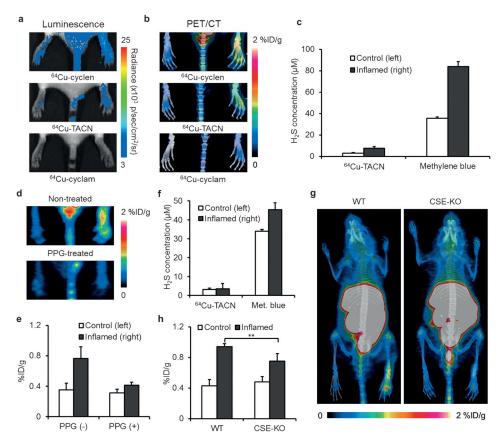
We then turned to the in vivo detection of H₂S with ⁶⁴Cu-cyclen. We hypothesized that ⁶⁴Cu-cyclen could extravascularly circulate through the entire body and react with H₂S to form an insoluble ⁶⁴CuS precipitate with prolonged retention in lesions. We could then detect radioactive ⁶⁴CuS by nuclear

imaging. Radioactive 64Cu can also be imaged by luminescence imaging because ⁶⁴Cu emits relatively strong Cerenkov luminescence during the β-decay process. To test our hypothesis, we administered four different treatments-Matrigel alone or Matrigel mixed with NaCl (1 mg), H₂S solution freshly prepared by bubbling H₂S into water (30 μL), or NaHS (50 μg)—to the back muscle of rats, followed by an immediate injection of ⁶⁴Cu-cyclen into the tail vein. The animals were then imaged with an optical imager. As expected, Cerenkov luminescence was detected only at the injection sites of the H₂S gas solution and NaHS (Figure 2a). When the same rat was further imaged by using an animal PET scanner at 4 h post-injection, the H₂S and NaHS injection sites could be clearly visualized (Figure 2b). This result clearly indicates that 64Cu-cyclen immediately reacts with H₂S to form ⁶⁴CuS, and that the formed ⁶⁴CuS remains in the lesion for a sufficient amount of time to be detected by imaging. The long retention of CuS was further demonstrated by direct inoculation of 64CuS along with free 64CuCl₂, 64Cucyclen, and ⁶⁴Cu-cyclam (Figure 2 c,d). Whereas the luminescence signals of 64Cu-cyclen and 64Cu-cyclam faded very quickly, within 1 h, 64CuS showed greater than 50% signal retention even at 4 h (Figure 2 d,e).

To evaluate 64 Cu–cyclen as an imaging probe for H_2S , an acute inflammation model was developed by injection of the complete Freund's adjuvant (CFA) into the right hind paw of BALB/c mice. CFA stimulates endogenous H_2S formation, which results in an increase in the local concentration. $^{[20]}$ Three structurally similar 64 Cu-labeled complexes $^{(64}$ Cu–

Figure 2. Studies of H₂S detection in animals. a) Cerenkov luminescence images acquired by injecting the back muscle of SD rats with Matrigel alone (top left), Matrigel mixed with NaCl (1 mg; top right), H₂S-gas solution (30 μL; bottom left), or NaHS (50 μg; bottom right) at 0 min. b) PET image obtained at 4 h. "L" indicates the liver. c, d) Cerenkov luminescence images acquired by injecting free ⁶⁴CuCl₂ (top left), ⁶⁴CuS (top right), ⁶⁴Cu–cyclen (bottom left), and ⁶⁴Cu–cyclam (bottom right) into the back muscle. The images were taken immediately after injection (c) and at 4 h (d). e) Quantitative analysis of clearance from the injection sites.

cyclen, ⁶⁴Cu–TACN, ⁶⁴Cu–cyclam) with different sensitivities for H₂S detection were injected intravenously into these mice. At 1 h post-injection of ⁶⁴Cu–cyclen, the best signal-to-background ratio was observed at the paw lesion. When the three radiotracers were compared, the highest Cerenkov signal was observed for ⁶⁴Cu–cyclen, followed by ⁶⁴Cu–TACN and ⁶⁴Cu–cyclam (Figure 3 a).


The uptake pattern as assessed by PET/CT imaging of the three tracers matched well that of luminescence imaging (Figure 3b). ⁶⁴Cu–cyclen showed a distinct difference in signal intensity between the inflamed and control paws, whereas ⁶⁴Cu-cyclam showed only marginal uptake differences. As observed by luminescence imaging, 64Cu-TACN showed an intermediate uptake difference between those of cyclen and cyclam, which reflects the H₂S-detection sensitivity observed in vitro for the three radiotracers (cyclen > TACN > cyclam; Figure 1e). The inflammation/control-paw luminescence signal ratio was quantified as 1.7 ± 0.13 , 1.4 ± 0.05 , and 1.2 ± 0.04 for cyclen, TACN, and cyclam, respectively (see Figure S10a). The PET quantification data also showed similar activity ratios of 2.2 ± 0.22 , 1.7 ± 0.24 , and 1.3 ± 0.11 , respectively. Biodistribution data were in good agreement with the PET imaging data (see Figure S10b). The average H₂S concentration in the inflamed paw was $(7.50 \pm 1.35) \,\mu\text{M}$, as compared to $(3.07 \pm$ 0.54) µm for the normal paw, on the basis of TLC measurements (Figure 3c). The H_2S concentration ratio (2.4 \pm 0.61) between the two paws was in good agreement with the PET signal ratio of 64 Cu–cyclen of 2.2 ± 0.22 . These results clearly indicate that our radiotracer maintains sensitivity under physiological conditions, and endogenously generated H₂S can be detected and quantified accurately by both optical and nuclear imaging. Specifically, ⁶⁴Cu-cyclen showed the highest sensitivity for the detection of H2S, and PET quantification data reflected the actual H₂S concentration in vivo.

For further confirmation of selective H_2S detection by 64 Cu–cyclen under physiological conditions, a H_2S blocking study was performed. DL-Propargylglycine (PPG), an inhibitor of the H_2S -generating enzyme cystathionine- γ -lyase (CSE), $^{[20]}$ was injected 1 h before CFA injection in the paw inflammation model. After PPG treatment, the uptake in the inflammation paw was dramatically reduced to control levels (Figure 3 d). Although the signal decrease was minimal in the control paw, $^{[21]}$ in the inflamed paw, the percentage of the injected dose per gram ($^{\%}IDg^{-1}$) decreased by 50%. The inflamed/control-paw uptake ratio decreased from 2.2 ± 0.71 to 1.3 ± 0.25 (Figure 3 e). After PPG treatment, the H_2S concentration was also dramatically reduced in the inflamed paw, as observed by PET imaging (Figure 3 f).

We performed analogous paw-imaging studies with CSE-knockout (KO, CSE $^{-/-}$) and wild-type (WT, CSE $^{+/+}$) mice $^{[22]}$ (Figure 3g). Whereas uptake in the control paws of WT and KO mice was comparable, uptake in the inflamed paw in KO mice was significantly lower than that of WT mice. The uptake ratio of the inflamed to the control paw was 2.2 ± 0.42 and 1.6 ± 0.31 in WT and KO mice, respectively (Figure 3h). These data further demonstrate selective H_2S detection by $^{64}\text{Cu-cyclen}$.

Biodistribution studies were carried out in normal mice to accurately quantify the clearance pattern of the radiotracer (see

Figure 3. In vivo detection of endogenous H_2S by luminescence and PET imaging in paw inflammation models. a) Cerenkov luminescence images obtained at 1 h. b) PET maximum intensity projection (MIP) images fused with CT images recorded at 1 h. c) H_2S concentration in paw inflammation models (n=5). d) Comparative PET-MIP images showing the H_2S -inhibition effect of PPG. e) Quantification analysis based on PET imaging studies (n=3). f) Absolute quantification of H_2S in PPG-treated models by using the 64 Cu-TACN (n=7) and methylene blue methods (n=5). g) PET/CT images of 64 Cu-cyclen in CSE-KO and WT paw inflammation models. h) Quantification analysis based on PET imaging studies (n=6); $^{**}P < 0.01$.

Figure S11). Although the injected 64 Cu–cyclen cleared rapidly through the kidneys at early time points, more than $25\%\,\mathrm{ID}\,\mathrm{g}^{-1}$ activity was still observed in the liver and kidneys at 1 h postinjection. These remnant activities, which are thought to be from 64 CuS, were then cleared extremely slowly over up to 24 h.

We then moved to an acute myocardial infarction (MI) model. [23] Recent experimental data strongly suggest that higher H₂S concentrations are induced in infarct lesions to protect against cardiac cell death in MI models.[24] The detection of an H₂S concentration change in MI models is much more challenging because the heart is located inside the thoracic cavity and an infarct lesion in the heart is only a few millimeters in size. Focal uptake was clearly visualized in the heart region in the transverse section of the fused PET/computed tomography (CT) image (Figure 4a). Two days later, the same rat was injected with 2-deoxy-2-[18F]fluoroglucose ([18F]FDG) and imaged by PET again. A typical donut-shaped myocardium with one portion missing was observed in the transverse image (Figure 4b). Healthy myocardium readily takes up the glucose analogue, [18F]FDG, as an energy source; however, the infarct lesion showed markedly reduced uptake.[25] When two PET images were coregistered with the CT image, the focal hot spot of ⁶⁴Cu-cyclen perfectly matched the defect site in the donut-

shaped myocardium of the [18F]FDG image (Figure 4c). As a negative control, no focal uptake of ⁶⁴Cu-cyclen observed in the myocardium of the healthy rat (see Figure S12b). In contrast, when NaHS solution was injected directly into the myocardium before the tail-vein injection of 64Cu-cyclen, the focal uptake of 64Cu-cyclen in the healthy heart was analogous to that observed in MI models (see Figure S12a,c). These results clearly indicate that the high uptake of 64Cu-cyclen in the MI lesion was due to increased H₂S concentrations.

High focal uptake in the infarct lesion was confirmed by an ex vivo autoradiogram (Figure 4d). Triphenyltetrazolium chloride (TTC) staining of the same heart section showed a white infarct lesion, which was well-matched with the high-activity lesion of the autoradiogram (Figure 4e). The adjacent heart slice was further investigated by Masson's trichrome staining (Figure 4 f). Upon quantification, uptake of [18F]FDG was 2.5fold (± 0.76) greater in the healthy lesion, whereas that of 64 Cu–cyclen was 4.5-fold (\pm

1.18) higher in the infarct lesion (Figure 4h). This result indicates that the infarct lesion could be more readily detected by ⁶⁴Cu-cyclen. ⁶⁴Cu-cyclen imaging is also advantageous in that positive uptake is measured rather than negative uptake as with [18F]FDG. For ex vivo confirmation, the infarcted heart was cut into six pieces, and activity was counted by using a gamma counter. The piece containing most of the infarct lesion (#1) showed approximately fourfold higher uptake as compared to the other heart pieces (Figure 4i), in analogy with the PET quantification data. The H₂S concentration in the infarct lesion (#1) was measured as $(11.4 \pm 1.6) \,\mu\text{M}$, whereas the H₂S concentration in section 6 was (3.52 ± 1.13) µm. The other four areas showed intermediate concentrations, which is generally consistent with the activity uptake pattern in biodistribution studies (Figure 4i). Together, these data clearly demonstrate that elevated H₂S concentrations, in infarction lesions of only a few millimeters in size, could be imaged with good spatial resolution by PET imaging, and could be quantified without an invasive biopsy. Neither Cu-cyclen (see Figure S13) nor CuS (see Figure S14) showed any noticeable cytotoxicity in an MTT assay.

In summary, we have developed new chemical tools for the detection, quantification, and in vivo imaging of endog-

enous H₂S in live animals. ⁶⁴Cu–cyclen showed a sub-micromolar detection limit and high selectivity for H₂S over other potential competitors, including polysulfides. The H₂S concentration in biological samples was instantly measured without harsh sample pretreatment. The increased endogenous H₂S concentration was clearly imaged and quantified by a human-applicable nuclear imaging technique in two different disease models. Overall, by the use of a new gas-trapping strategy, many obstacles of previous methods were overcome. Our methods could be efficiently used in H₂S biology and medicine.

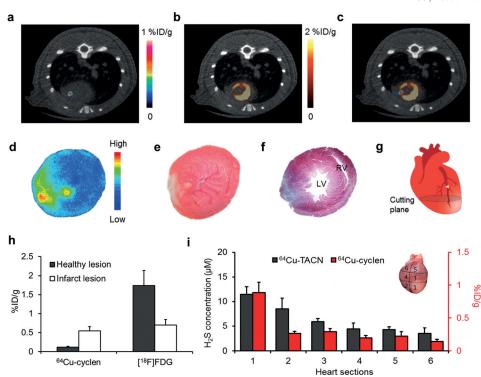


Figure 4. PET/CT imaging in MI models and ex vivo validation of the excised MI heart. a) Transverse PET/CT image of the MI model at 4 h with 64 Cu-cyclen. b) Transverse PET/CT image of the same MI model at 1 h with $[^{18}$ F]FDG. c) Coregistered fusion image of 64 Cu-cyclen and $[^{18}$ F]FDG. d) Ex vivo autoradiogram, e) TTC staining, and f) Masson's trichrome staining of the excised heart of an MI model at 4 h with 64 Cu-cyclen. LV, left ventricle; RV, right ventricle. g) Schematic drawing showing the cutting plane of the MI heart. The infarct lesion is marked by a white blur. h) Quantification analysis in PET imaging (n=4 each). i) H_2S concentrations measured with 64 Cu-TACN in MI hearts (n=5). Biodistribution data are displayed in red (n=3). A heart was cut into six pieces as shown inside the graph.

Acknowledgements

This research was supported by the R&D Program of the National Research Foundation of Korea, which is funded by the Ministry of Science, ICT and Future Planning (No. 2013M2A2A6042317, 20120006386, 2013R1A4A1069507). The Korea Basic Science Institute (Daegu) is acknowledged for providing assistance with the NMR and MS measurements.

Keywords: gas immobilization · hydrogen sulfide · imaging agents · nuclear imaging · radioisotopes

How to cite: Angew. Chem. Int. Ed. **2016**, 55, 9365–9370 Angew. Chem. **2016**, 128, 9511–9516

- [1] C. Szabo, Nat. Rev. Drug Discovery 2007, 6, 917-935.
- [2] D. J. Polhemus, D. J. Lefer, Circ. Res. 2014, 114, 730-737.
- [3] Y. Takano, K. Shimamoto, K. Hanaoka, *J. Clin. Biochem. Nutr.* **2016**, *58*, 7–15.
- [4] P. Nagy, Z. Pálinkás, A. Nagy, B. Budai, I. Tóth, A. Vasas, Biochim. Biophys. Acta Gen. Subj. 2014, 1840, 876–891.
- [5] N. S. Lawrence, J. Davis, R. G. Compton, *Talanta* 2000, 52, 771 784
- [6] N. Kumar, V. Bhalla, M. Kumar, Coord. Chem. Rev. 2013, 257, 2335–2347.
- [7] A. R. Lippert, E. J. New, C. J. Chang, J. Am. Chem. Soc. 2011, 133, 10078-10080.
 - [8] K. Sasakura, K. Hanaoka, N. Shibuya, Y. Mikami, Y. Kimura, T. Komatsu, T. Ueno, T. Terai, H. Kimura, T. Nagano, J. Am. Chem. Soc. 2011, 133, 18003 18005.
 - [9] Y. Chen, C. Zhu, Z. Yang, J. Chen, Y. He, Y. Jiao, W. He, L. Qiu, J. Cen, Z. Guo, Angew. Chem. Int. Ed. 2013, 52, 1688-1691; Angew. Chem. 2013, 125, 1732-1735.
 - [10] R. Weissleder, M. J. Pittet, *Nature* **2008**, *452*, 580–589.
 - [11] X. J. Zou, Y. C. Ma, L. E. Guo, W. X. Liu, M. J. Liu, C. G. Zou, Y. Zhou, J. F. Zhang, Chem. Commun. 2014, 50, 13833-13836.
 - [12] M. D. Hammers, M. J. Taormina, M. M. Cerda, L. A. Montoya, D. T. Seidenkranz, R. Parthasarathy, M. D. Pluth, J. Am. Chem. Soc. 2015, 137, 10216– 10223.
 - [13] J. Cao, R. Lopez, J. M. Thacker, J. Y. Moon, C. Jiang, S. N. S. Morris, J. H. Bauer, P. Tao, R. Mason, A. Lippert, *Chem. Sci.* 2015, 6, 1979–1985.
 - [14] M. Rudin, Curr. Opin. Chem. Biol. 2009, 13, 360–371.
 - [15] J. R. Goates, M. B. Gordon, N. D. Faux, J. Am. Chem. Soc. 1952, 74, 835–836.
 - [16] K. Itiaba, J. Crawhall, C. Sin, Clin. Biochem. 1970, 3, 287–293.
 - [17] X. Zhou, Y. Feng, Z. Zhan, J. Chen, J. Biol. Chem. 2014, 289, 28827 – 28834.
 - [18] H. Yang, Y. Mao, B. Tan, S. Luo, Y. Zhu, Eur. J. Pharmacol. **2015**, 761, 135–143.
 - [19] A. Papapetropoulos, M. Whiteman, G. Cirino, Br. J. Pharmacol. 2015, 172, 1633–1637.
- [20] L. Li, M. Bhatia, Y. Z. Zhu, Y. C. Zhu, R. D. Ramnath, Z. J. Wang, F. B. Anuar, M. Whiteman, M. Salto-Tellez, P. K. Moore, FASEB J. 2005, 19, 1196–1198.
- [21] H. Zhang, S. M. Moochhala, M. Bhatia, J. Immunol. 2008, 181, 4320–4331.
- [22] I. Ishii, N. Akahoshi, H. Yamada, S. Nakano, T. Izumi, M. Suematsu, J. Biol. Chem. 2010, 285, 26358 26368.
- [23] T. N. Johns, B. J. Olson, Ann. Surg. 1954, 140, 675-682.
- [24] A. Sivarajah, M. McDonald, C. Thiemermann, Shock 2006, 26, 154–161.
- [25] W. W. Lee et al. J. Am. Coll. Cardiol. 2012, 59, 153-163.

Received: April 20, 2016 Revised: June 5, 2016 Published online: July 8, 2016